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Two-Mode Normal Squeezing of a Nondegenerate
Bimodal Multiquanta Jaynes–Cummings Model in the
Presence of Stark Shifts
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We investigate the two-mode normal squeezing in the presence of Stark shifts
for a generalized Jaynes–Cummings Model (JCM) with a two-level particle (atom
or trapped ion) and two modes interacting nonlinearly. The effect of the relative
phase between the atomic superposition state and the coherent field in the presence
and absence of the Stark shift on squeezing is studied. Different values for the
parameters of the atomic coherent state are taken.

1. INTRODUCTION

The Jaynes–Cummings Model (JCM) [1] of a two-level atom in interac-
tion with a single mode of an electromagnetic field has been studied exten-
sively [2–5]. Sukumar and Buck [6, 7] proposed two exactly solvable
generalizations of the Jaynes–Cummings model, one involving intensity-
dependent coupling and the other involving multiphoton interaction between
the field and the atom. A number of generalized JCM models have been
investigated [8–17]. Zhu and Scully [18] and Boone and Swain [19] studied
the properties of nondegenerate and degenerate two-photon lasers. They found
that the photon distribution, the linewidth, and the frequency shift depend
strongly on the detailed atomic structure because of the effects of ac Stark
shifts. Brune et al. [20] showed that the ac Stark shifts may be proposed to
realize a quantum-nondemolition scheme to measure the number of photons
stored in a high-Q cavity. Also, the quantum properties of a coupled atom–
field system, such as the collapse and revival of atomic inversion [21–25],
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atomic transition lines [24], the squeezing of the field [25], and the phase
properties of the field [26], can be changed drastically due to the influence of
ac Stark shifts. A number of authors [27–34] have studied various dynamical
aspects of the nondegenerate two-mode JCM. In particular, Cirac and San-
chez-Soto [35] pointed out that, in the degenerate two-photon Jaynes–
Cummings model in the presence of Stark shifts, the field which traps the
atom in the linear superposition of its two levels must be a single-mode
squeezed vacuum field. In other studies, the particle (atom or trapped ion)
is taken to be prepared initially in a coherent superposition of its upper and
lower levels, and it interacts with a single coherent mode [36, 37].

In this article, we find the wave function in the presence of Stark shifts
for the system of two modes in interaction with the particle. Then we calculate
two-mode normal squeezing for different values of the parameters in the
particle coherent state .Cparticle(0)& where the two modes are initially in coher-
ent states. The effects of the change in the relative phases in the presence
and absence of the Stark shift on the two-mode normal squeezing are studied.
This article is organized as follows: In Section 2, we present the wave function
for the nondegenerate bimodal multiquanta Jaynes–Cummings Hamiltonian.
Section 3 is devoted to an investigation of the influence of the Stark shift
on two-mode normal squeezing in the JCM either in the resonant and off-
resonant. Concluding remarks are provided in the last section.

2. THE WAVE FUNCTION OF THE SYSTEM

We consider the nondegenerate bimodal multiquanta JCM with a detun-
ing parameter. The nondegenerate bimodal multiquanta JCM consists of a
two-level particle (atom or trapped ion) and two modes interacting nonlinearly.
The interaction between the particle and the field is affected by ki quanta of
the ith mode. The Hamiltonian for the system in the rotating wave approxima-
tion is written as

Ĥ 5
v0

2
ŝz 1 o

2

j51
vj â

†
j âj 1 â†

1â1b1.g&^g. 1 â†
2â2b2.e&^e.

1 l(â†k1
1 â†k2

2 ŝ2 1 âk1
1 âk1

2 ŝ+) 5 Ĥ0 1 Ĥint (1)

This Hamiltonian can be generated from a Raman coupling for an
effective three-level ion in a L-configuration confined with a two-dimensional
harmonic trap as described in ref. 38.

An ion confined in an electromagnetic trap can be regarded as a particle
with quantized center-of-mass (c.m.) motion moving in a harmonic potential.
A classical laser driving field changes the external states of the ion motion
by exciting or deexciting the internal atomic states of the trapped ion. After
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using the adiabatic elimination procedure, a general form of this Hamiltonian
is obtained. If both the vibrational amplitudes of the ion are much smaller
than the laser wavelength, then the Lamb–Dicke limit can be used. In this
limit one has only the leading term in the Lamb–Dicke parameter h whose
square gives the ratio between the single-photon recoil energy to the energy
level spacing in the harmonic oscillator potential. This model, Eq. (1), can
be obtained in the Lamb–Dicke approximation and in the limit of suitable
trap anisotropy and specific sideband detunings of the laser. In this case the
â’s describe vibrational modes and ŝ’s describe the ion internal states. This
Hamiltonian generalizes that of ref. 39, where one of the â’s describes the
cavity mode and the other describes the vibrational mode of the ion in the
cavity QED of a trapped ion. As the coupling between the vibrational modes
and the external environments is extremely weak, dissipative effects, which
are inevitable from cavity damping in the optical regime, can be significantly
suppressed for the ion motion.

It is easy to prove that Ĥ0 and Ĥint commute i.e.,

[Ĥ0, Ĥint] 5 0 (2)

where

Ĥ0 5 v1Fn̂1 1
k1

2
(ŝz 1 I)G 1 v2Fn̂2 1
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1â1b1.g&^g. 1 â†
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with the detuning parameter D given by

D 5 (v0 2 k1v1 2 k2v2) (5)

where âj(â
†
j ) and n̂j 5 â†

j âj are the annihilation (creation) and number opera-
tors for the jth mode, l is the particle–field coupling constant, b1 and b2 are
parameters describing the intensity-dependent Stark shifts of the two levels
that are due to the virtual transition to the intermediate relay level; v1 and
v2 are the field frequencies for the two modes, v0 is the transition frequency
of the particle (atom or trapped ion), ŝz is the population inversion operator,
and ŝ6 are the “spin-flip” operators, which satisfy the relations [ŝ+, ŝ2] 5
ŝz and [ŝz , ŝ6] 5 62ŝ6. When k1 5 k2 5 1, Eq. (1) reduces to that of ref. 28.

Let us consider the particle prior to the interaction to be prepared in a
coherent superposition of its excited and ground states [36, 37],
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.Cparticle(t 5 0)& 5 cos1u
22.e& 1 e2if sin1u

22.g& (6)

The initial particle–field state is then a product of the superposition state
and the field in a photon coherent state or the squeezed field

.C(0)& 5 o
n1,n2

qn1qn1.n1, n2&.Cparticle(t 5 0)& (7)

where

qnj 5 e2nj/2!nj
nj /nj! ( j 5 1, 2) (8)

By using the interaction Hamiltonian (4) and the initial condition (7), we
find the solution of the Schrödinger equation

i
d
dt

.C(t)& 5 Ĥint.C(t)& (9)

in the form

.C(t)& 5 o
n1,n2

qn1qn2Hexp[2iltgn11k1,n21k2] cos1u
22[An11k1,n21k2.n1, n2; e&
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22
3 [A*n1,n2.n1, n2; g& 2 inn1,n2 Rn1,n2.n1 2 k1, n2 2 k2; e&]J (10)

where the coefficients An1,n2, nn1,n2, and Rn1,n2 are given by

An1,n2 5 cos ltbn1,n2 2 iFdn1,n2 1
D
2lGRn1,n2, Rn1,n2 5

sin ltbn1,n2

bn1,n2

(11)
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2
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1
2 Fb2

l
(n2 2 k2) 2

b1

l
n1G (13)

It is concluded that the former studies can be considered as special cases
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here; for example, by putting k1 5 k2 5 1, b1 5 b2 5 0, and D 5 0 we get
the model studied by Abdel-Hafez [40]. The model of Nasreen [28] is obtained
by putting k1 5 k2 5 1. Therefore, this model represents a more generalized
JCM than those studied before.

It must be noted that the state .n1, n2; e& means that the first mode is
in the n1th Fock state, the second mode is in the n2th Fock state, while the
third subscript stands for the excited particle state. Thus the expectation value
of any operator Q and its dependence on time can be obtained through the
formula (10),

^Q(t)& 5 ^C(t).Q.C(t& (14)

3. TWO-MODE NORMAL SQUEEZING OF THE FIELD

Now we study the two-mode normal squeezing of the field of the
nondegenerate bimodal multiquanta JCM and discuss effects of the Stark shifts
on this type of squeezing. The operators of the real parts of the quadrature are
defined by [41]

Ẑ1(t) 5
1

2!2
[Â1 1 Â†

1 1 Â2 1 A†
2],

Ẑ2(t) 5
1

2i!2
[Â1 2 Â†

1 1 Â2 2 Â†
2] (15)

where Âj 5 âj eivjt and Â†
j 5 â†

j e2ivjt ( j 5 1, 2) are slowly varying operators.
These operators satisfy the commutation relation

[Ẑ1, Ẑ2] 5 i/2 (16)

and the uncertainty relation

(DẐ1)2(DẐ2)2 $ 1/16 (17)

The state of the field is said to be squeezed whenever one of the two
quadratures Ẑ1 and Ẑ2 satisfies the relation

(DẐ1)2 or (DẐ2)2 , 1/4 (18)

On the other hand, the condition (18) can be rewritten as

Wj 5 (DẐj)2 2
1
4

( j 5 1 or 2) (19)

and squeezing occurs when W1 or W2 , 0. In terms of the annihilation and
creation operators of the field, we readily find that
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1Â

†
2& 1 ^Â†
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1 &

2 ^Â2
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By using Eq. (14), we can obtain the expectation values in the general form
for the field operators Â†r1

1 Âs1
1 Â†r2

2 Âs2
2 as follows:
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1 Âs1

1 Â†r2
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Fig. 1. Time evolution for the two-mode normal squeezing parameter W1 of Eq. (20) with u 5
0 (the particle initially in the excited state), n1 5 n2 5 10, and the detuning parameter D/(2l)
5 0 (dotted curve) and 5 (full curve) for various values of the parameters b1 and b2: (a) b1/
l 5 b2/l 5 0, (b) b1/l 5 b2/l 5 0.5, and (c) b1/l 5 b2/l 5 1.

1
i
2

sin u
.a1.k1.a2.k2

eiVk1,k2 exp[2ilt(gn11s1,n21s2 2 gn11r1,n21r2)]

3 F n1!
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where Pnj 5 exp(2nj) nj
nj /nj! for the coherent state and Vk1,k2 5 f 2 (k1c1

1 k2c2) is the relative phase between the particle state (phase f) and the
field coherent state phase (k1c1 1 k2c2).
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4. DISCUSSION AND CONCLUSIONS

Now we discuss the temporal behavior of W1, which gives information
on two-mode normal squeezing for two quanta k1 5 k2 5 1, when we take
n1 5 n2 5 10 and different values of the angles u and V with various values
of b1 and b2 in the resonant and off-resonant cases.

Numerical results for Eq. (20) are presented in Figs. 1–8. Here we plot
the two-mode normal squeezing W1, Eq. (20), against lt in the interval [0–10]
for n1 5 n2 5 10 and different values of u (namely 0, p/4, p/2, 3p/4, and
p) and the relative phase V1,1 (namely 0, p/2) in the absence or presence of
Stark shifts either in the resonant or the off-resonant case.

In Fig. 1 we display the results for u 5 0 (the particle initially in the
excited state) for D/(2l) 5 0 (dotted curve) and D/(2l) 5 5 (full curve) in
the absence of the Stark shift, b1/l 5 b2/l 5 0 (see Figs. 1a and 2a), and

Fig. 2. The same as in Fig. 1, but for u 5 p (the particle initially in the ground state).
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in the presence of the Stark shift, b1/l 5 b2/l 5 0.5 and 1 (see Figs. 1b–c
and 2b–c), and in Fig. 2 we have the case for u 5 p (the particle initially
in the ground state) for D/(2l) 5 0 (dotted curve) and D/(2l) 5 5 (full curve).

Figures 1 and 2 clearly show in the absence of the Stark shift (b1/l 5
b2/l 5 0) that the squeezing appears in three interval [0–1], [2–4], and
[8.5–9.5] for D 5 0 (dotted curve) and appears in the interval [0–4] for the
off-resonant case (full curve) (see Figs. 1a and 2a), while in the presence of
the Stark shift, b1/l 5 b2/l 5 0.5 and 1, the squeezing occurs in two intervals
[0–1] and [6–7] for u 5 0 (excited state) and also occurs in the interval
[0–1] for u 5 p (ground state) for two the resonant and off-resonant cases.
Also, the amount of squeezing decreases with increasing b1 and b2. It is also

Fig. 3. Time evolution for the two-mode normal squeezing parameter W1 of Eq. (20) with u 5
p/4, n1 5 n2 5 10, the detuning parameter D/(2l) 5 0 (dotted curve) and 5 (full curve), and
the relative phase V1,1 5 0 for various values of the parameter b1 and b2: (a) b1/l 5 b2/l 5
0, (b) b1/l 5 b2/l 5 0.5 and (c) b1/l 5 b2/l 5 1.
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Fig. 4. The same as in Fig. 3, but with u 5 p/2.

apparent from the calculations that for these special cases, the phases do not
affect squeezing.

In Figs. 3–5 we display the results for the relative phase V1,1 5 0 and
for different values of u (namely p/4, p/2, and 3p/4), respectively, in the
absence and presence of the Stark shift.

In the absence of Stark shift (b1/l 5 b2/l 5 0), we see that the squeezing
occurs for u 5 p/4 in three intervals, [0–1], [2–4], and [8.5–9.5], while in
the two cases u 5 p/2, 3p/4 the squeezing disappears in the interval [0–1]
and appears only in the intervals [2–4] and [8.5–9.5] for D/(2l) 5 0 (dotted
curve) (see Figs. 3–5a) and, the squeezing also occurs in the interval [1–3]
for the off-resonant case (full curve) in all the cases under consideration.

In the presence of the Stark shift (b1/l 5 b2/l 5 0.5 and 1; see Figs.
3b–c, 4b–c and 5b–c) the squeezing occurs only in the resonant case D 5
0 (dotted curve). When b1/l 5 b2/l 5 0.5 the squeezing appear twice for
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Fig. 5. The same as in Fig. 3, but with u 5 3p/4.

u 5 p/4 and in the two cases u 5 p/2, 3p/4 it appears only once, but for
b1/l 5 b2/l 5 1 the squeezing appears only once in the two cases u 5
p/4 and u 5 3p/4 and no squeezing occurs in the case u 5 p/2, and also
no squeezing appear in the off-resonant case, D/(2l) 5 5 (full curve) in all
the cases under consideration.

The same values in as in Figs. 3–5 are taken in Figs. 6–8, but with the
relative phase V1,1 5 p/2; we observe from these figures that for the short
time 0 # lt , 1 the maximum amount of squeezing is enhanced for u 5
p/2. We also observe that the squeezing in these cases (Figs. 6–8a) is larger
than those in Figs. 3–5a. Furthermore, we notice that the squeezing occurs
at later times for 2 , lt , 4 and 8.5 , lt , 9.5. For the first interval, by
increasing u, the two-mode normal squeezing increases, while the order is
reversed for the latter interval. In the presence of the Stark shift (b1/l 5 b2/
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Fig. 6. Time evolution for the two-mode normal squeezing parameter W1 of Eq. (20) with u 5
p/4, n1 5 n2 5 10, the detuning parameter D/(2l) 5 0 (dotted curve) and 5 (full curve), and
the relative phase V1,1 5 p/2 for various values of the parameter b1 and b2: (a) b1/l 5 b2/l
5 0, (b) b1/l 5 b2/l 5 0.5, and (c) b1/l 5 b2/l 5 1.

l 5 0.5 and 1; see Figs. 6b–c, 7b–c, and 8b–c), the squeezing occurs for
all values of u in the resonant and off-resonant cases.

The strong results of two-mode normal squeezing for the two cases
(absence and presence of Stark shift) for the two-photon (k1 5 k2 5 1) JCM
is shown in Fig. 7a–c for u 5 p/2 and relative phase V1,1 5 p/2.

Numerical calculations show that for V1,1 5 2p/2, the behavior of two-
mode normal squeezing is as observed in Figs. 6–8.

Thus we conclude that the effect of the relative phases on two-mode
normal squeezing is the strongest for different values of u in the two cases
(presence and absence of the Stark shift) when the relative phase V1,1 5
p/2. In the presence of the Stark shift we have shown that the amount of
squeezing decays with increase of the parameters b1 and b2.
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Fig. 7. The same as in Fig. 6, but with u 5 p/2.
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